Decision Rule-based Algorithm for Ordinal Classification based on Rank Loss Minimization

نویسندگان

  • Krzysztof Dembczyński
  • Wojciech Kot
چکیده

Many classification problems have in fact an ordinal nature, i.e., the class labels are ordered. We introduce a decision rule algorithm, called RankRules, tailored for this type of problems, that is based on minimization of the rank loss. In general, the complexity of the rank loss minimization is quadratic with respect to the number of training examples, however, we show that the introduced algorithm works in linear time (plus sorting time of attribute values that is performed once in the pre-processing phase). The rules are built using a boosting approach. The impurity measure used for building single rules is derived using one of four minimization techniques often encountered in boosting. We analyze these techniques focusing on the trade-off between misclassification and coverage of the rule. RankRules is verified in the computational experiment showing its competitiveness to other algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage Sag Compensation with DVR in Power Distribution System Based on Improved Cuckoo Search Tree-Fuzzy Rule Based Classifier Algorithm

A new technique presents to improve the performance of dynamic voltage restorer (DVR) for voltage sag mitigation. This control scheme is based on cuckoo search algorithm with tree fuzzy rule based classifier (CSA-TFRC). CSA is used for optimizing the output of TFRC so the classification output of the network is enhanced. While, the combination of cuckoo search algorithm, fuzzy and decision tree...

متن کامل

USING DISTRIBUTION OF DATA TO ENHANCE PERFORMANCE OF FUZZY CLASSIFICATION SYSTEMS

This paper considers the automatic design of fuzzy rule-basedclassification systems based on labeled data. The classification performance andinterpretability are of major importance in these systems. In this paper, weutilize the distribution of training patterns in decision subspace of each fuzzyrule to improve its initially assigned certainty grade (i.e. rule weight). Ourapproach uses a punish...

متن کامل

Optimal Capacitor Allocation in Radial Distribution Networks for Annual Costs Minimization Using Hybrid PSO and Sequential Power Loss Index Based Method

In the most recent heuristic methods, the high potential buses for capacitor placement are initially identified and ranked using loss sensitivity factors (LSFs) or power loss index (PLI). These factors or indices help to reduce the search space of the optimization procedure, but they may not always indicate the appropriate placement of capacitors. This paper proposes an efficient approach for t...

متن کامل

Ordinal Classification with Decision Rules

We consider the problem of ordinal classification, in which a value set of the decision attribute (output, dependent variable) is finite and ordered. This problem shares some characteristics of multi-class classification and regression, however, in contrast to the former, the order between class labels cannot be neglected, and, in the contrast to the latter, the scale of the decision attribute ...

متن کامل

A new approach based on data envelopment analysis with double frontiers for ranking the discovered rules from data mining

Data envelopment analysis (DEA) is a relatively new data oriented approach to evaluate performance of a set of peer entities called decision-making units (DMUs) that convert multiple inputs into multiple outputs. Within a relative limited period, DEA has been converted into a strong quantitative and analytical tool to measure and evaluate performance. In an article written by Toloo et al. (2009...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009